
COVID-19 Article Clustering and Keyword Search Tool

VAAKESAN SUNDRELINGAM∗ and WENJUAN QI, University of Waterloo

Currently as part of the COVID-19 Open Research Dataset (CORD-19), there
are over 29,000 scholarly articles available to the global research community.
In order to aid in research efforts, we have developed a set of search tools
which can be used to quickly find relevant articles for scientists, researchers,
and the general public. The tools allow the user to search by keyword or
article, and allow the user to specify any similarity metric (such as Euclidean,
Jaccard, cosine, or any custom metric). The search tool scales linearly with
the number of articles in the corpus but suffers from some latency due to
large computational and network communication overhead.

ACM Reference Format:
Vaakesan Sundrelingam andWenjuan Qi. 2020. COVID-19 Article Clustering
and Keyword Search Tool. 1, 1 (April 2020), 7 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
The COVID-19 Open Research Dataset Challenge (CORD-19) was

issued on March 12, 2020 on Kaggle.com in partnership with The
White House Office of Science and Technology Policy, the Allen Insti-
tute for AI, the Chan Zuckerberg Initiative, Georgetown University’s
Center for Security and Emerging Technology, Microsoft Research,
and the National Library of Medicine - National Institutes of Health.
The data can be found here: https://www.kaggle.com/allen-institute-
for-ai/CORD-19-research-challenge. Below is a subset of the tasks
that the challenge aims to tackle:
• What is known about transmission, incubation, and environ-
mental stability?
• What do we know about COVID-19 risk factors?
• What do we know about virus genetics, origin, and evolution?
• What do we know about vaccines and therapeutics?
• What has been published about medical care?
• What do we know about non-pharmaceutical interventions?
• What do we know about diagnostics and surveillance?
• What has been published about ethical and social science
considerations?
• What has been published about information sharing and inter-
sectoral collaboration?

The theme for each problem can be summarized by specific key-
words. For example, the task:What do we know about vaccines and
therapeutics? might require a survey of articles with the keywords

∗Both authors contributed equally to this research.

Authors’ address: Vaakesan Sundrelingam; Wenjuan Qi, , University of Waterloo, 200
University Ave W, Waterloo, Ontario, N2L 3G1.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
XXXX-XXXX/2020/4-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

vaccines and therapeutics. To direct research efforts, challenge par-
ticipants and researchers might need a fast way to search the entire
library of articles. There are over 36,000 full text articles in the data
set, and searching efficiently will require distributed solutions.
The goal of this project is to create a searching tool to quickly

find articles which match the needs of the researcher. There are two
approaches that will be considered:
• The user has a topic or theme in mind and wants to search
for articles based on some keywords.
• The user has begun with a single article of interest and wants
to find similar articles.

The solutions that will be explored are as follows:
• Using the idea of inverted index (discussed in Section 2.2), take
a keyword of user’s interest and output not only a posting
list but also similar documents based some similarity metric
(discussed further in Section 2.3).
• Measuring document similarity, either output a posting of
similar documents by some measure, or determine a cluster of
documents to which the article belongs (discussed in Section
2.1).

2 METHODOLOGY
The dataset contains over 36,000 full text articles in json format

and a metadata CSV file which contains information about the
article’s:
Title, Abstract, Publish date, Authors, Journal, URL, etc.

For the purposes of the search tool, the title and abstract are
sufficient to represent the contents of the article. These strings
need to be tokenized and then represented as a set of numerical
features in order to perform the necessary algebra on these articles.
The tokenizer used was part of the Python nltk Natural Language
Toolkit Library.

The tokenized data was converted into a numerical vector using
the bag-of-words approach. The corpus dictionary was calculated
and each document was transformed into a numerical vector where
each element represents the count of the corresponding word in
the dictionary. The size of the corpus dictionary was 19,577 and the
number of articles in the corpus was 29,561. The resulting sparse
title_unigrams_bag_of_words matrix was 29, 561 · 19, 577.

This processing was repeated using bigrams to preserve some of
the sentence structure in the titles, which resulted in a matrix of
size 29, 561 · 149, 902. For development and testing purposes, the
bigram matrix was too computationally expensive, and similarly for
the unigram and bigram matrices for the abstracts. With additional
computational resources these same search tools could be used for
larger corpuses (see Section 3.3.2).
Two approaches were tried to reduce the size of the dictionary,

both using tools from the Natural Language Toolkit:
• The stopwords corpuswas used to eliminate common english
stopwords such as: a, the, etc.

, Vol. 1, No. 1, Article . Publication date: April 2020.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 • Qi and Sundrelingam

• The stemming package was tried to reduce words to their root,
such as infect for infected. However this produced unexpected
consequences such as removing terminal s’s on words that
would have caused issues in our search tool, and was not
used.

Some exploratory analysis was done to understand the corpus.
The most common 5 words and their counts are as follows:

[(’virus’, 5666), (’respiratory’, 3321), (’coronavirus’, 3196), (’infec-
tion’, 2661), (’human’, 2164)]

And the rarest 5 words with their frequency and the documents
they appeared in are as follows:

[(’retraction’, 1, [(28, 1)]), (’notify’, 1, [(41, 1)]), (’wenliang’, 1, [(41,
1)]), (’quicker’, 1, [(50, 1)]), (’abierto’, 1, [(66, 1)])]

2.1 Clustering
To guide the article search, it is useful to cluster or group similar

articles together. This allows researchers to quickly find related
articles on a single topic. To accomplish the clustering goal, variants
of the k-Means algorithm were used. The end product of which is
an interactive tool where the user can input a single document and
a level of similarity, and receive as output a list of all articles that
are within the specified level of similarity to the article of interest.
The first approach used to create this tool was a k-Means algorithm.

The k-Means algorithm is a point assignment clustering method.
The algorithm works in the following steps:

(1) The 𝑘 centroids are initialized, based on some criteria (Section
2.1.1).

(2) Each article is mapped to the closest centroid, based on some
similarity measure.

(3) The centroids are recalculated by averaging the articlesmapped
to the same centroid.

(4) the process is repeated until some stopping criteria is reached.
The centroid are interpreted by ranking each token, and looking

at the top 10 tokens for each centroid.

2.1.1 Initialization Procedure. Performance of the k-Means algo-
rithm is highly dependent on the instance order and initial clustering
[Cao et al. 2009]. Therefore the initialization of the centroids is an
important aspect of the algorithm to explore. Two initialization
procedures were compared:

(1) Random selection. In the implementation used, a sample of 𝑘
articles were used as the initial 𝑘 centroids.

(2) Maximum distance. This implementation involves selecting
an initial article at random as the first centroid. The next cen-
troid is chosen to be as far away from the first as possible. The
third is chosen to be as far from the previous two centroids
as possible. This repeats until 𝑘 centroids are chosen.

The implementation of the random selection initialization procedure
was made in Spark following the skeleton:

Algorithm 1 RandomER Selection

𝑟𝑎𝑛𝑑𝑜𝑚_𝑖𝑛𝑑𝑖𝑐𝑖𝑒𝑠 ← 𝑟𝑎𝑛𝑑𝑜𝑚.𝑠𝑎𝑚𝑝𝑙𝑒 (𝑟𝑎𝑛𝑔𝑒 (𝑑𝑎𝑡𝑎.𝑐𝑜𝑢𝑛𝑡 ()), 𝑘)
𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠 = 𝑑𝑎𝑡𝑎.𝑧𝑖𝑝𝑊 𝑖𝑡ℎ𝐼𝑛𝑑𝑒𝑥 ()

.𝑓 𝑖𝑙𝑡𝑒𝑟 (𝑟𝑎𝑛𝑑𝑜𝑚_𝑖𝑛𝑑𝑖𝑐𝑖𝑒𝑠)

The k-Means algorithm was run with two clusters using this
initialization procedure. The algorithm completed in 250.94s on
average and the centroids selected by this method were summarized
as described above by mapping the centroids to their tokens and
ranking tokens based on the largest value:
[[(0.19168442775466016, 'virus'),

(0.11235156805034, 'respiratory'),
(0.10812273757569607, 'coronavirus'),
(0.09002334314422003, 'infection'),
(0.07320951317703576, 'human'),
(0.07063838424845224, 'influenza'),
(0.06958963429074055, 'viral'),
(0.06421056192699347, 'protein'),
(0.056125038059474275, 'disease'),
(0.05389221556886228, 'syndrome')],
[(1.0, 'remodeling'),
(1.0, 'pathological'),
(1.0, 'loss'),
(1.0, 'induced'),
(1.0, 'ii'),
(1.0, 'dysfunction'),
(1.0, 'cardiac'),
(1.0, 'augments'),
(1.0, 'apelin'),
(1.0, 'angiotensin')]]

We see an issue with this implementation in that one centroid
occurs by itself i.e. all other articles belong to the first cluster and
the second centroid is a cluster on its own. This suggesets there is
some sparsity in the articles which will be discussed later (Section
3.3.2).

The implementation of the maximum distance initialization pro-
cedure was made in Spark by the following skeleton:

Algorithm 2 Maximum Distance

𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠 ← 𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠.𝑡𝑎𝑘𝑒𝑆𝑎𝑚𝑝𝑙𝑒 (1)
while 𝑙𝑒𝑛(𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠) < 𝑘 do
𝑛𝑒𝑤𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠 = 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (
𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 .𝑚𝑎𝑝 (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛)
.𝑠𝑜𝑟𝑡 ().𝑡𝑎𝑘𝑒 (1)
)

end while

The k-Means algorithm was run with two clusters using this
initialization procedure and the centroids were summarized below.
The results are as follows:
[[(0.19167794316644113, 'virus'),

(0.11234776725304466, 'respiratory'),
(0.108085250338295, 'coronavirus'),
(0.08998646820027063, 'infection'),
(0.07320703653585926, 'human'),
(0.07063599458728011, 'influenza'),
(0.06958728010825439, 'viral'),
(0.0641745602165088, 'protein'),
(0.056089309878213804, 'disease'),
(0.05389039242219215, 'syndrome')],

, Vol. 1, No. 1, Article . Publication date: April 2020.

COVID-19 Article Clustering and Keyword Search Tool • 3

[(1.0, 'types'),
(1.0, 'therapy'),
(1.0, 'suspected'),
(1.0, 'support'),
(1.0, 'stock'),
(1.0, 'spread'),
(1.0, 'role'),
(1.0, 'responsibilities'),
(1.0, 'reliable'),
(1.0, 'relevant')]]

Below are the results with three clusters using a random initial-
ization and only three iterations. The top five tokens in each cluster
show that there is some non-obvious patterns in the data emerging:

[[(0.12514235654840122, 'coronavirus'),
(0.11331581252737626, 'respiratory'),
(0.07503285151116951, 'viral'),
(0.07459483136224267, 'infection'),
(0.0745072273324573, 'human')],
[(1.0, 'health'),
(0.3678899082568807, 'public'),
(0.14678899082568808, 'global'),
(0.11284403669724771, 'care'),
(0.08256880733944955, 'disease')],
[(0.9976954440702003, 'virus'),
(0.16486438574720794, 'infection'),
(0.14731430597411807, 'influenza'),
(0.12178691721326006, 'respiratory'),
(0.11363233469243042, 'protein')]]

The above result may be a lucky initialization. In such a high
dimensional space with high sparsity, there is a high probability of
singleton clusters due to the existence of outliers.

2.1.2 Distance Metrics. Part (2) of the algorithm in section 2.1 in-
volves the mapping of each article to the closest centroid, based
on some similarity measure. Some of the commonly used distance
metrics for document clustering are Euclidean distance, cosine simi-
larity, Jaccard coefficient, Pearson correlation coefficient, and aver-
aged Kullback-Leibler divergence [Zhang et al. 2011]. We explored
the first three of these measures, and their implementations are
discussed in more detail under section 2.3.

In the MLlib k-Means implementation, there is no option to spec-
ify explicitly or supply your own distance function. Our results show
that there is a large variation in the final clusters between the three
distance metrics that were compared. This variation in performance
was also shown between Euclidean, Manhattan and Minkowski dis-
tance in previous studies [Singh et al. 2013]. Therefore, the careful
choice of distance metric is an important consideration, and was
included in our implementation.

2.1.3 k-Means Algorithm. The k-Means algorithm as discussed
above has an inherent sequential implementation. Ignoring the
initialization step (which was discussed in detail earlier in section
2.1.1), at each iteration articles have to be mapped to a centroid and
a new centroid has to be calculated. Both of these operations have a
distributed implementation that should improve performance:

(1) At each iteration 𝑘 centroids are calculated. In Spark, a map
transformation can use any desired distance_function to
determine the closest centroid to each article.

(2) Recalculating the centroid requires grouping all articles be-
longing to the same cluster and computing the mean. Using
the groupByKey transformation, bringing all of the articles
into the memory of one worker node resulted in memory
overflow. Instead, articles were combined pairwise using
reduceByKey. Articles are summed pairwise along with a
running count of the number of articles in that cluster. A final
map transformation is required to calculate the mean.

Algorithm 3 k-Means

𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒_𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛()
while 𝑖 < 𝑛𝑢𝑚_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
𝑛𝑒𝑤_𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠 =
𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 .𝑚𝑎𝑝 (𝑐𝑙𝑜𝑠𝑒𝑠𝑡_𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑, (𝑥 [0], 1)
.𝑟𝑒𝑑𝑢𝑐𝑒𝐵𝑦𝐾𝑒𝑦 ((𝑥 [0] + 𝑦 [0], 𝑥 [1] + 𝑦 [1]))
.𝑚𝑎𝑝 (𝑥 [0]/𝑥 [1])

𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠 ← 𝑛𝑒𝑤_𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠
)

end while

2.1.4 Interactive Search. The goal of the research was to develop
a searching tool to quickly find articles which match the needs of
the researcher. One of the use cases described had a user that has
begun with a single article of interest and wants to find similar
articles. Given an article title input by the user, there are two search
functions:

(1) Return the top num most similar articles by the user-specified
similarity measure (e.g. cosine, Jaccard, Euclidean, etc).

(2) Return a random sample of num articles from all articles which
belong to the same "cluster" as the article of interest. The
clusters can be trained before-hand and cached in order to
speed query time.

In the solution for (1), the user inputted title is processed (con-
verted into a bag-of-words vector) and then the distance between
the title and every article in the corpus is computed in a map func-
tion. The top num results as specified by the user are returned. Below
is a sketch of the algorithm:

Algorithm 4 Similar Articles

𝑡𝑖𝑡𝑙𝑒_𝑖𝑛𝑝𝑢𝑡 ← 𝑢𝑠𝑒𝑟_𝑖𝑛𝑝𝑢𝑡 ()
𝑡𝑖𝑡𝑙𝑒 ← 𝑏𝑎𝑔_𝑜 𝑓 _𝑤𝑜𝑟𝑑𝑠 (𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒 (𝑡𝑖𝑡𝑙𝑒_𝑖𝑛𝑝𝑢𝑡) − 𝑠𝑡𝑜𝑝_𝑤𝑜𝑟𝑑𝑠)
𝑐𝑙𝑜𝑠𝑒𝑠𝑡 = 𝑡𝑖𝑡𝑙𝑒𝑠 .𝑚𝑎𝑝 (𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒 (𝑥) − 𝑠𝑡𝑜𝑝_𝑤𝑜𝑟𝑑𝑠)
.𝑚𝑎𝑝 (𝑏𝑎𝑔_𝑜 𝑓 _𝑤𝑜𝑟𝑑𝑠)
.𝑚𝑎𝑝 (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛)

if 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐽𝑎𝑐𝑐𝑎𝑟𝑑_𝑠𝑖𝑚 then
return 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 .𝑡𝑎𝑘𝑒𝑂𝑟𝑑𝑒𝑟𝑒𝑑 (𝑛𝑢𝑚,−𝑥 [1])

else
return 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 .𝑡𝑎𝑘𝑒𝑂𝑟𝑑𝑒𝑟𝑒𝑑 (𝑛𝑢𝑚, 𝑥 [1])

end if

, Vol. 1, No. 1, Article . Publication date: April 2020.

4 • Qi and Sundrelingam

Note that at each step of the algorithm, the original titles have to
be carried forward so that the output is useful for the user.
The solution for (2) involves processing the user input then per-

forming k-Means clustering on the corpus and determining the
cluster to which the title of interest belongs. Finally what is output
is a random sample of num articles from the same cluster. The sketch
of the algorithm follows:

Algorithm 5 Article Cluster

𝑡𝑖𝑡𝑙𝑒_𝑖𝑛𝑝𝑢𝑡 ← 𝑢𝑠𝑒𝑟_𝑖𝑛𝑝𝑢𝑡 ()
𝑡𝑖𝑡𝑙𝑒 ← 𝑏𝑎𝑔_𝑜 𝑓 _𝑤𝑜𝑟𝑑𝑠 (𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒 (𝑡𝑖𝑡𝑙𝑒_𝑖𝑛𝑝𝑢𝑡) − 𝑠𝑡𝑜𝑝_𝑤𝑜𝑟𝑑𝑠)
𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠 = 𝑘𝑀𝑒𝑎𝑛𝑠 ()
𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 = 𝑐𝑙𝑜𝑠𝑒𝑠𝑡_𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 (𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠, 𝑡𝑖𝑡𝑙𝑒)
𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 𝑡𝑖𝑡𝑙𝑒𝑠 .𝑚𝑎𝑝 (𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒 (𝑥) − 𝑠𝑡𝑜𝑝_𝑤𝑜𝑟𝑑𝑠)
.𝑚𝑎𝑝 (𝑏𝑎𝑔_𝑜 𝑓 _𝑤𝑜𝑟𝑑𝑠)
.𝑚𝑎𝑝 (𝑐𝑙𝑜𝑠𝑒𝑠𝑡_𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 (𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠, 𝑥)
.𝑓 𝑖𝑙𝑡𝑒𝑟 (𝑥 == 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑)

𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑟𝑎𝑛𝑑𝑜𝑚.𝑠𝑎𝑚𝑝𝑙𝑒 (𝑐𝑙𝑢𝑠𝑡𝑒𝑟 .𝑐𝑜𝑢𝑛𝑡 (), 𝑛𝑢𝑚)
return 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 .𝑧𝑖𝑝𝑊 𝑖𝑡ℎ𝐼𝑛𝑑𝑒𝑥 ()
.𝑓 𝑖𝑙𝑡𝑒𝑟 (𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑎𝑚𝑝𝑙𝑒)

In this implementation, the user defines the number of clusters
and a distance function. The performance and scalability of the
algorithm are discussed later.

2.2 Inverted Index
Inverted index is an index data structure which directs you from

a word to location in collection of documents. In our analysis, the
type of inverted index we used is record-level type and we are
interested in inverted index for unigrams which is adequate in sizes
to perform operations. For example, for a particular token 𝑖 , the
format of output is give as:

𝑇𝑖 , 𝑑 𝑓𝑖 , [(𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑖1, 𝑡 𝑓𝑖1), · · · , (𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑖𝑛, 𝑡 𝑓𝑖𝑛)] (1)

𝑇𝑖 is token,𝑑 𝑓𝑖 is document frequency, 𝑡 𝑓𝑖 𝑗 is term frequency of to-
ken 𝑖 in document 𝑗 . The procedures of inverted index construction
is summarized as follows:

(1) Tokenize titles to remove symbols and retain words.
(2) Remove stop words such as ’an’, ’it’ because stop words are

frequent and cannot carry useful meanings.
(3) Remove empty tokens.
(4) Reference each document an index of sequential order.
(5) Count frequency of each token in each document (term fre-

quency).
(6) Move document ID to term frequency as a value pair and

token as key.
(7) Group by keys (token) to remove duplicate tokens.
(8) Sort keys based on either ascending order or descending order

of document frequency on each token.
We used inverted index idea to construct a function with the

purpose to show top 𝑛 tokens and corresponding posting list. The
function allows user to choose between "sort by the most frequent
tokens" or "sort by the rarest tokens" and how many tokens they
want to show based on their preference.

2.3 Document similarity
The inverted index function will be useful for researchers to

have an idea of the summary of a collection of documents by going
through the top 𝑘 tokens. Furthermore, if researchers are interested
in a particular keyword, it will act as a map to refer them a list
of documents of interest. This idea is implemented using concept
of "document similarity". We firstly show all posting lists which
contain the keyword, including document IDs and titles. Next, we
will let users to specify one document ID of their interest from the
posting list, then all documents in the list will form a pair with
the particular document. Three types of similarity measures are
implemented and the documents which pass the threshold will be
given to users, including documents titles and similarity scores. In
an exception of small lists of similar documents with length less
than 10, threshold will not be used and all documents will be given
in the output.
For threshold value of similarity, there is no exact rule to deter-

mine it and justify the choice. We decided to calculate different
thresholds in different word searchs, so it is not fixed. Threshold is
set as 𝛼 units of standard deviation above the mean. It is formulated
as follows:

𝑚𝑖𝑛(𝑠𝑖𝑚) = 𝑎𝑣𝑔(𝑠𝑖𝑚) + 𝛼 ∗ 𝜎
Where,𝑚𝑖𝑛(𝑠𝑖𝑚) is the threshold similarity score, 𝛼 is the parameter,
and𝜎 is standard deviation. Similarity calculations are based on pairs
of the selected document with each of the rest documents. In our
analysis, we choose 𝛼 = 0.75. For Euclidean distance, we use −0.75
as the parameter and look for a similarity smaller than threshold,
otherwise, we extract the upper area. By assuming similarities follow
a Normal Distribution, the threshold value can capture the top 23%
similarities.
We consider three commonly used similarity measures in natu-

ral language processing: Jaccard Similarity, Cosine Similarity and
similarity based on Euclidean distance. We will go through each in
detail.

2.3.1 Euclidean Distance. Euclidean distance was used as the base-
line distance metric for all algorithms. The formula is simply given
by: √

(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2 + · · · + (𝑥𝑖 − 𝑦𝑖)2

∀𝑥𝑖 , 𝑦𝑖 . The issuewith the Euclidean distancemetric is that articles
with smaller titles are given higher similarity scores. These titles
limit the number of pairs (𝑥𝑖 , 𝑦𝑖) and therefore minimize the sum.
For this reason, we also explore and compare the results from other
distance metrics.

2.3.2 Jaccard similarity. Jaccard index is a statistic used to measure
how two finite sample sets are similar to each other. Jaccard Simi-
larity is always bounded between 0 and 1. The higher the Jaccard
index, the more similar the documents are. The Jaccard index is
defined in the following formula:

𝐽 (𝐴, 𝐵) = |𝐴 ∩ 𝐵 ||𝐴 ∪ 𝐵 | =
|𝐴 ∩ 𝐵 |

|𝐴| + |𝐵 | − |𝐴 ∩ 𝐵 | (2)

where𝐴 and 𝐵 are two finite sample sets. Jaccard index is size of the
intersection divided by the size of the union of the two sets. Specifi-
cally, in the search engine context, formula (2) can be simplified as

, Vol. 1, No. 1, Article . Publication date: April 2020.

COVID-19 Article Clustering and Keyword Search Tool • 5

follows:
𝐽 (𝑑𝑜𝑐𝑖 , 𝑑𝑜𝑐 𝑗) =

𝑝

𝑝 + 𝑞
where 𝑝 is the number of (𝑑𝑜𝑐𝑖 = 1 and 𝑑𝑜𝑐 𝑗 = 1) and 𝑞 is the
number of (𝑑𝑜𝑐𝑖 = 1 or 𝑑𝑜𝑐 𝑗 = 1).
In big data applications, implementation of actual Jaccard Simi-

larity is sometimes replaced by approximated or alternative version
called the "MinHash" technique [Wang et al. 2014]. The Jaccard Sim-
ilarity starts from a bag of words (a list of tokens and occurrences in
each document). Regular Jaccard Similarity requires pairwise com-
parisons across all documents so it needs 𝑁 (𝑁 − 1) comparisons
assuming 𝑁 is the number of documents. The updated version of
Jaccard Similarity can shorten the length of the bag of words and it
just uses one number called the "Signature" to replace it, but requires
more procedures than the actual Jaccard Similarity. The idea behind
the𝑚𝑖𝑛 − ℎ𝑎𝑠ℎ function can be listed as following steps:
• Generate a random sample with length of unigrams.
• 𝑅𝐷𝐷1 .𝑚𝑎𝑝 (𝑚𝑖𝑛−ℎ𝑎𝑠ℎ), with𝑚𝑖𝑛−ℎ𝑎𝑠ℎ function as following
process:

(1) Assign key from random sample to each bag of words.
(2) Sort based on key in ascending order.
(3) Use counter to record first occurrence of 1. It is called

signature.
(4) End up with an signature 𝑘𝑑𝑜𝑐𝑖 ,𝜋 for document 𝑑𝑜𝑐𝑖 for

permutation 𝜋 .
(5) Repeat the𝑚𝑖𝑛 − ℎ𝑎𝑠ℎ function for permutation 𝑖 + 1 until

specified permutation 𝑛 is reached.
As 𝑛 goes up, approximated signatures will approach actual Jac-

card Similarity. In our analysis, we set 𝑛=50. To avoid pairwise com-
parison, we perform transformations on each permutation parallel
in Spark. We call this version without pairwise "Jaccard signature
variation 1". The idea is summarized as follows:
• 𝑅𝐷𝐷2 ← Store the output of index 𝑘𝑑𝑜𝑐𝑖 ,𝜋 for all 𝑑𝑜𝑐𝑖 and 𝜋
as key-value pair (𝑑𝑜𝑐𝑖𝑑, 𝑘𝑑𝑜𝑐𝑖 ,𝜋).Perform transformation on
each permutation 𝜋 :
• 𝑅𝐷𝐷2 .𝑚𝑎𝑝 (𝑓 (𝑥)), given user specified document ID:𝐷𝑂𝐶𝐼𝐷 ,
with 𝑓 (𝑥) function as following:

(1) If value of user input ID equals value in (𝐷𝑂𝐶𝐼𝐷, 𝑘𝑑𝑜𝑐𝑖 ,𝜋),
add (𝑑𝑜𝑐𝑖𝑑, 1) to list.

(2) 𝑅𝐷𝐷2 .𝑟𝑒𝑑𝑢𝑐𝑒𝐵𝑦𝐾𝑒𝑦 (𝑠𝑢𝑚) ← flatmap output list for all
permutations.

(3) End up with (𝑑𝑜𝑐𝑖𝑑, 𝑠𝑖𝑚 = 𝑠𝑢𝑚
𝑛), where 𝑠𝑖𝑚 is Jaccard sim-

ilarity which is calculated as total number of permutations
in which the value equals user input document’s value.

To compare results and efficiency difference between actual Jac-
card Similarity and approximated Jaccard using Signatures, we also
implemented actual Jaccard Similarity in a pairwise manner. Specif-
ically, we used bag of words for each document to form a Cartesian
pair between 𝑑𝑜𝑐𝑖 and 𝑑𝑜𝑐 𝑗 . We put all Cartesian pairs into an RDD
as an element. Then we perform actual Jaccard Similarity calcula-
tions on each element parallel. This is also the same way we used
to implement other similarity measures such as "Cosine Similarity"
and "Euclidean Similarity". In addition, we applied the approximated
Jacard Similarity algorithm in pairwise fashion in order to compare
running times. For each pair of two documents, we implemented a

Python code to transform a bag of word list into a list of two signa-
tures for 𝑑𝑜𝑐𝑖 and 𝑑𝑜𝑐 𝑗 and then end up with a list of Boolean value
to test equivalence of the two for all permutations. The parallel
procedure is performed as above on all pairs of documents. We call
this version "Jaccard signature variation 2"

2.3.3 Cosine similarity. Cosine Similarity is a gauge to measure
how two documents are similar to each other independent of their
document sizes.
Cosine Similarity is useful in plagiarism detection. Suppose we

have two documents 𝐷𝑜𝑐𝑎 and 𝐷𝑜𝑐𝑏 but 𝐷𝑜𝑐𝑏 is just a smaller
portion of 𝐷𝑜𝑐𝑎 . Using Euclidean distance between these two docu-
ments will not give us a desirable similarity simply because number
of common words are not large. However, we expect these two
documents to have very high similarity because they share the same
contents. Cosine Similarity is a good candidate in this situation
because it calculates cosine value of angle between the two vectors.
The smaller the anger the higher the similarity. Cosine Similarity
is bounded between 0 and 1. A higher cosine value of the angle
implies two documents are more similar. The cosine Similarity is
formulated as follows [Sitikhu et al. 2019]:

𝑐𝑜𝑠 (\) = ®𝑎 · ®𝑏®𝑎®𝑏 =

∑𝑛
1 𝑎𝑖𝑏𝑖√∑𝑛

1 𝑎
2
𝑖

√∑𝑛
1 𝑏

2
𝑖

(3)

For this approach we used occurrence of each token (bag of
words), and then applied Cosine Similarity to calculate similarity
score between each pair of documents.

3 EVALUATION

3.1 Keyword Search
We implemented three types of similarities in the keyword search

function. Users will be interested in similarities and differences be-
tween them in terms of search results and running time. First of all,
we found that some articles have same titles but different doi number.
For example, 1598 : ’Comparative phyloinformatics of virus genes
at micro and macro levels in a distributed computing environment’
appears four times in the dataset with document number 1599, 1560
and 1561. In our similarity result, we can see all three document
pairs (1598, 1599), (1598, 1560) and (1598, 1561) are given with iden-
tical similarities: Jaccard similarity outputs 1′𝑠 for all the pairs, and
cosine similarity is 0.999. This is consistent with what we expect.
To evaluate how Jaccard signature similarity using𝑚𝑖𝑛 − ℎ𝑎𝑠ℎ

approach compares to actual Jaccard similarity using number of
permutations 50, we have tried different keywords and document
IDs.We fixed keywords so that all documents contained the keyword
and we fixed one document ID in the pair, looping through all
remaining documents:

keyword document ID Mean difference
’canada 508 0.069149
’covid’ 5 0.09694
’virus’ 1598 0.04150

The mean difference is calculated using the formula:

Mean difference =

√∑𝑘
𝑖=1 (𝑠𝑖𝑚1𝑖 − 𝑠𝑖𝑚2𝑖)2

𝑘

, Vol. 1, No. 1, Article . Publication date: April 2020.

6 • Qi and Sundrelingam

where 𝑠𝑖𝑚1𝑖 is actual Jaccard Similarity for document pair 𝑖 , 𝑠𝑖𝑚2𝑗
is approximated Jaccard Similarity for document pair 𝑖 , 𝑘 is to-
tal number of document pair containing the keyword. This result
demonstrates that using𝑚𝑖𝑛−ℎ𝑎𝑠ℎ approach approximated Jaccard
Similarity are very close to the actual Jaccard Similarity.
However, in the aspect of run time, run time for actual Jaccard

is smallest among the three. Run time between two approximated
versions are very interesting: "Jaccard signature variation 2" is less
than "Jaccard signature variation 1" when keyword is common and
contained in many articles because version 1 includes pairwise
comparison, and calculation in each pair includes sorting and two
for loops so run time is 2𝑛 + 𝑛𝑙𝑜𝑔𝑛 . When users are looking for
rare keyword, number of pairs the algorithm needs to loop over
are fewer. In this situation, communications over network between
different nodes are manifest. Here is an example to illustrate the
idea:

similarity ’canada (82)’ ’genes’ (267)
’Jaccard’ 160 268

’Jaccard variation 1’ 177 841
’Jaccard variation 2’ 220 301

’Cosine’ 212 211
’Euclidean’ 210 213

Where run times are denoted in seconds. We expect that as docu-
ment number increases or if keywords are common words, Jaccard
variation 2 run time will be lower than the actual Jaccard and Jaccard
variation 1.

In the three actual similarity measures, we can see Cosine Simi-
larity can ignore size of two documents and only focus on common
tokens between them so sometimes long documents paired with
short documents will tend to have small similarity but in other
times it is reversed. Euclidean distance of a document pair contain-
ing a shorter title actually has smaller distance. Here is an exam-
ple: [(4.123105625617661, (’Comparative phyloinformatics of virus
genes at micro and macro levels in a distributed computing environ-
ment’, ’Pulmonary function and bronchial reactivity 4 years after the
first virus-induced wheezing’))), (’1598-23466’, (3.1622776601683795,
(’Comparative phyloinformatics of virus genes at micro and macro
levels in a distributed computing environment’, ’Bat and virus’))]
Shorter article is actually more closer to reference document.

Run time for actual Jaccard Similarity, Cosine Similarity and Eu-
clidean Similarity are very close. In one keyword search of "virus"
(very common word in articles) for document ID 1598, Jaccard Simi-
larity requires 223𝑠 , Cosine Similarity requires 295𝑠 and Euclidean
Similarity requires 382𝑠 .

3.2 Article Search
Every day there are more articles being added to the corpus as

part of the COVID-19 Open Research Dataset Challenge (CORD-19).
In order to continue to be useful, the search tools that were built
should scale with a larger corpus. In order to evaluate the scalability,
both article search tools were run ten times each on three different
corpus sizes: 100, 1000, and 29,561. The results for the article search
function are summarized in Figure 1:
A linear regression was fit to the observed runtimes. Although

the relationship is strong, the most important observation is that the

Fig. 1. Article search run 10 times each for various corpus sizes.

Fig. 2. Article cluster search run 10 times each for various corpus sizes.

relationship is linear. In other words, the runtime of the algorithm
scales linearly with the number of articles.
In terms of absolute value, the average runtime is still slow

(250.94s for the full corpus of 29,561 articles). However, we believe
this is partly attributable to the overhead in network communica-
tion, and partly attributable to having run the program on just a
single worker node.
Figure 2 shows a summary of the performance of the article

cluster search algorithm under the same setup.
We note again that there is a strong linear relationship, and also

that in terms of absolute value the algorithm is slow (843.38s average
runtime for the full corpus). There is additional computational over-
head in the article cluster search attributable to having to compute
the clusters. However this demonstrates again that the search tool
scales linearly with the size of the corpus.

3.3 Future Work
3.3.1 Generalizability. For the keyword search engine, we should
generalize the idea into bigrams or n-grams and apply the similarity
measure to abstracts or whole articles. In this way, the difference
between similarities will be manifest and similar documents found
by this search engine will be better supported. With even larger
document sizes, we can also assess how Jaccard variation approx-
imates actual Jaccard Similarity score. Furthermore, we could use

, Vol. 1, No. 1, Article . Publication date: April 2020.

COVID-19 Article Clustering and Keyword Search Tool • 7

term frequency-inverse document frequency instead of bag of words
to give a different weight to each token to mitigate the impact of
common words appearing in most of documents.

3.3.2 Outlier Detection. The randomER initialization function
that was determined to produce the best clusters cannot guarantee
convergence [Cao et al. 2009]. Using smart initialization, we
found that there was a sparsity problem with respect to the data. In
such high dimensional space, there is a high probability of creating
clusters of one.
The existing k-Means package in the MLlib library from Spark

uses setInitializationMode as either random initialization or the
k-means|| algorithm which is a variant of the k-means++ algorithm
[Bahmani et al. 2012]. The k-means++ algorithm selects the initial
centroids sequentially based on the total distance within the clusters
created by those centroids [Arthur and Vassilvitskii 2006].

The potential issue of the k-Means++ algorithm is that it is possi-
bly sensitive to outliers. The objective function given [Arthur and
Vassilvitskii 2006] seeks to select the centroids so as to minimize
the total distance between the centroid and all points in the cluster
determined by that centroid:

Φ =
∑
𝑥 ∈𝑋

min
𝑐∈𝐶
| |𝑥 − 𝑐 | |2

In order to increase sensitivity to outliers (centroids which will
inherently have a low value for Φ), we attempted to change the
objective function to include not only the distance between the
centroid and all points in the cluster determined by that centroid,
but also the total number of points in the cluster:

Ψ =
1

| |𝑋 | | + 1
∑
𝑥 ∈𝑋

min
𝑐∈𝐶
| |𝑥 − 𝑐 | |

In our formulation, the objective function was inversely propor-
tional to the size of the cluster 𝑋 generated by centroid 𝑐 . To avoid
the issue of dividing by zero, an adjustment of 1 was made to the size
of the cluster 𝑋 . The objective function is also, like the k-Means++
formulation, directly proportional to the total distance between the
centroid and every point in the cluster. Note that this quantity is
potentially zero (clusters of one) and so our implementation filtered
out these cases. The rough implementation was as follows:

Algorithm 6 smartER Initialization

𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠 ← 𝑅𝐷𝐷.𝑡𝑎𝑘𝑒𝑆𝑎𝑚𝑝𝑙𝑒 (𝐹𝑎𝑙𝑠𝑒, 1)
while 𝑙𝑒𝑛(𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠) < 𝑘 do
𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 =

𝑅𝐷𝐷.𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛(𝑅𝐷𝐷).𝑚𝑎𝑝 (𝑜𝑏 𝑗𝑒𝑐𝑡𝑖𝑣𝑒_𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛)
.𝑟𝑒𝑑𝑢𝑐𝑒𝐵𝑦𝐾𝑒𝑦 (𝑙𝑎𝑚𝑏𝑑𝑎 𝑥,𝑦 : 𝑥 + 𝑦)
.𝑓 𝑖𝑙𝑡𝑒𝑟 (𝑜𝑏 𝑗𝑒𝑐𝑡𝑖𝑣𝑒_𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ! = 0)
.𝑚𝑎𝑥 ()

𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛)
end while

However, this algorithm was unable to terminate in a reasonable
amount of time. In future work, we would like to explore this ini-
tialization criteria further and build a fast, scalable implementation.

3.3.3 Performance and Scalability. For the article search, the run-
time on one worker node was slow. We would like to compare
the performance on a cluster with many worker nodes, and look
for other opportunities to improve runtime in general for both the
article search tools and the keyword search tools.

REFERENCES
David Arthur and Sergei Vassilvitskii. 2006. k-means++: The advantages of careful

seeding. Technical Report. Stanford.
Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi Kumar, and Sergei Vassil-

vitskii. 2012. Scalable k-means++. arXiv preprint arXiv:1203.6402 (2012).
Fuyuan Cao, Jiye Liang, and Guang Jiang. 2009. An initialization method for the

K-Means algorithm using neighborhood model. Computers Mathematics with
Applications 58, 3 (2009), 474 – 483. https://doi.org/10.1016/j.camwa.2009.04.017

Archana Singh, Avantika Yadav, and Ajay Rana. 2013. K-means with Three different
Distance Metrics. International Journal of Computer Applications 67, 10 (2013).

Pinky Sitikhu, Kritish Pahi, Pujan Thapa, and Subarna Shakya. 2019. A Comparison of
Semantic Similarity Methods for Maximum Human Interpretability. (2019).

Jingdong Wang, Hengtao Shen, Jingkuan Song, and Jianqiu Ji. 2014. Hashing for
Similarity Search: A Survey. (2014).

Taiping Zhang, Yuan Yan Tang, Bin Fang, and Yong Xiang. 2011. Document clustering
in correlation similarity measure space. IEEE Transactions on Knowledge and Data
Engineering 24, 6 (2011), 1002–1013.

, Vol. 1, No. 1, Article . Publication date: April 2020.

https://doi.org/10.1016/j.camwa.2009.04.017

	Abstract
	1 Introduction
	2 Methodology
	2.1 Clustering
	2.2 Inverted Index
	2.3 Document similarity

	3 Evaluation
	3.1 Keyword Search
	3.2 Article Search
	3.3 Future Work

	References

